NK, NKG

Installation and operating instructions

English (GB) Installation and operating instructions

Original installation and operating instructions.

CONTENTS

		Page
1.	Symbols used in this document	2
2.	General information	2
3.	Receiving the product	2
3.1 3.2	Delivery Transporting the product	2 2
3.3	Handling	3
3.4	Storing the product	3
4.	Identification	3
4.1	Nameplate	3
4.2 •	Type key Applications	4
5. 5.1	Pumped liquids	6 6
6.	Operating conditions	7
6.1	Ambient temperature and altitude	7
6.2	Liquid temperature	7
6.3	Maximum operating pressure	7
6.4 6.5	Minimum inlet pressure Maximum inlet pressure	7 7
6.6	Minimum flow rate	7
6.7	Maximum flow rate	7
6.8	Shaft seals	8
7.	Mechanical installation	9
7.1	Pump location	9
7.2	Foundation and grouting of horizontally mounted NK, NKG pumps with base frame	9
7.3	Alignment	12
7.4	Pipework	15
7.5	Vibration damping	15
7.6 7.7	Expansion joints Stuffing box piping	16 16
7.8	Bearing box piping Bearing box piping	17
7.9	Bearing monitoring	18
7.10		18
7.11	Ammeter	18
8.	Flange forces and torques	19
9. 9.1	Electrical connection Motor protection	20 20
9.1	Frequency converter operation	20
10.	Commissioning and startup	20
10.1	·	20
10.2	Commissioning	20
	Priming	21
10.4 10.5	S .	21 21
10.5	•	22
10.7		22
10.8	Reference readings of monitoring equipment	22
11.	Maintenance	22
11.1 11.2	Pump	22 23
11.2	Lubrication of bearings in bearing bracket Monitoring equipment	25 25
11.4	Motor	25
12.	Periods of inactivity and frost protection	25
13.	Service	26
13.1	Service kits	26
14.	Technical data	26
14.1		26
14.2 14.3		26 26
14.4		26
15.	Fault finding	27
16.	Disposal	28

^

Varning

Prior to installation, read these installation and operating instructions. Installation and operation must comply with local regulations and accepted codes of good practice.

1. Symbols used in this document

Warning

If these safety instructions are not observed, it may result in personal injury.

Caution

If these safety instructions are not observed, it may result in malfunction or damage to the equipment.

Note

Notes or instructions that make the job easier and ensure safe operation.

2. General information

NK, NKG are non-self-priming, single stage, centrifugal volute pumps with axial suction port and radial discharge port.

NK pumps comply with EN 733.

NKG pumps comply with ISO 2858.

3. Receiving the product

3.1 Delivery

The pumps are tested 100 % before leaving the factory. The test includes a function test where the pump performance is measured to ensure that the pump meets the requirements of relevant standards. Test certificates are available from Grundfos. After the installation, the alignment of pump and motor must be checked again. See section 7.3 Alignment.

3.2 Transporting the product

Always transport the pump in the specified position. During transport, the pump must be fastened securely to prevent damage to the shaft and shaft seal caused by excessive vibrations and knocks. The pump must not be lifted by the shaft.

Warning

Pay attention to the pump weight, and take precautions to prevent personal injury if the pump should topple or fall by accident.

3.3 Handling

Warning

Motors from 4 kW and up are supplied with lifting eyes which must not be used for lifting the entire pump unit.

Lift the pumps by means of nylon straps and shackles.

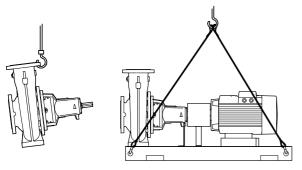


Fig. 1 Correct lifting of pump

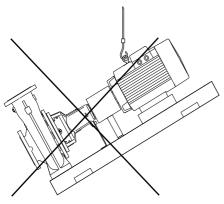


Fig. 2 Incorrect lifting of pump

3.4 Storing the product

The contractor must inspect the equipment on delivery and make sure that it is stored in such a way that corrosion and damage are avoided.

If more than six months will pass before the equipment is put into operation, please consider applying a suitable corrosion inhibitor to the internal pump parts.

Make sure that the corrosion inhibitor used does not affect the rubber parts with which it comes into contact.

Make sure that the corrosion inhibitor can be easily removed.

To prevent water, dust, etc. from entering the pump, all openings must be kept covered until the pipes are fitted. The cost of having to dismantle the pump during startup to remove foreign objects can be very high.

4. Identification

4.1 Nameplate

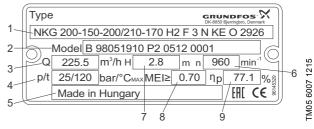


Fig. 3 Example of NKG nameplate

Legend

TM03 3948 1206

TM03 3769 1006

Pos.	Description
1	Type designation
2	Model
3	Rated flow
4	Pressure rating or maximum temperature
5	Country of origin
6	Rated speed
7	Pump head
8	Minimum efficiency index
9	Hydraulic pump efficiency at optimum efficiency point

4.2 Type key

Model B

										_					
Exa	mple 1, pump de	sign according t	o EN 733		NK	32	-125 .	1 /142	A 1	F	1 .	Α	Е	SE	BAQE
Exa	mple 2, pump de	sign according t	o ISO 2858		NKG 200	-150	-200	/210-170	H2	F	3	N I	KE	0	2926
Typ	e range				<u> </u>				1					1	
	ninal diameter of	suction port (DI	N)												
	ninal diameter of	· ` `	<u> </u>												
-	ninal impeller dia		()				J								
	uced performan														
-	ual impeller diam														
-	le for pump versi		av be combined						1						
		•	tandard bearing design,	standard counlin	na										
			tandard bearing design,	•	9										
В	Oversize motor		tandara boaring doorgin,	opacor coapinig											
E		oval certificate or	test report, the second	character of the r	numn vers	ion c	ode is	an F							
			ring design, standard co	•	Jump vero	1011 0	000 10	un L							
			ring design, standard co ring design, spacer cou	. •											
			design, standard couplir												
			design, standard coupling	19											
11			ated standard bearing o	lesian standard (counling										
	•	•	ated standard bearing o	-											
J1	•	•	ated standard bearing cated heavy-duty bearing	• .											
		-	ated heavy-duty bearing	-		ı									
	•	•	heavy-duty bearing des												
	•		heavy-duty bearing des	•											
	•		d standard bearing desi	•	mig										
		•	d standard bearing desi d heavy-duty bearing de	_											
		•	, ,	•											
			avy-duty bearing design rther customisation thar												
-	connection	used iii case oi iu	Titler custoffilsation that	Taileady listed						J					
-	Table E flange														
F	DIN flange														
	ANSI flange														
	JIS flange														
	nge pressure rati	ng (PN - rated pr	essure)												
	10 bar	ng (i ii Tulou pi	occuro,												
2	16 bar														
3	25 bar														
4	40 bar														
5	Other pressure ra	ating													
	erials	atting													
wat	Pump housing	Impeller	Wear ring	Shaft											
Α	EN-GJL-250	EN-GJL-200	Bronze/brass	1.4021/1.4034											
В	EN-GJL-250	Bronze CuSn10	Bronze/brass	1.4021/1.4034											
С	EN-GJL-250	EN-GJL-200	Bronze/brass	1.4401											
D	EN-GJL-250	Bronze CuSn10		1.4401											
E	EN-GJL-250	EN-GJL-200	EN-GJL-250	1.4021/1.4034											
F	EN-GJL-250	Bronze CuSn10		1.4021/1.4034											
G	EN-GJL-250	EN-GJL-200	EN-GJL-250	1.4401											
Н	EN-GJL-250	Bronze CuSn10	EN-GJL-250	1.4401											
1	1.4408	1.4408	1.4517	1.4462											
'	1.7700	1.7700	Carbon-graphite-filled	1.7702											
J	1.4408	1.4408	PTFE (Graflon®)	1.4462											
1/	4 4400	4 4400	4.4547	4 4404											

1.4401

1.4462

1.4401

1.4401

K 1.4408

L 1.4517

M 1.4408

N 1.4408

1.4408

1.4517

1.4517

1.4408

1.4517

1.4517

1.4517

Carbon-graphite-filled PTFE (Graflon®)

A1 F 1 A E S BAQE Example 1, pump design according to EN 733 NK 32 -125 .1 /142 NKG 200 -150 -200 Example 2, pump design according to ISO 2858 /210-170 H2 F 3 N KE O 2926 Carbon-graphite-filled P 1.4408 1.4517 1.4401 PTFE (Graflon®) Carbon-graphite-filled R 1.4517 1.4462 1.4517 PTFE (Graflon®) S EN-GJL-250 1.4408 Bronze/brass 1.4401 T EN-GJL-250 1.4517 Bronze/brass 1.4462 U 1.4408 1.4517 1.4517 1.4462 Carbon-graphite-filled 1.4462 W 1.4408 1.4517 PTFE (Graflon®) X Special version

Rubber parts in pump

The first letter indicates material of O-rings for pump cover and seal cover. O-ring for seal cover is only for double seal arrangements

The second letter indicates material of O-ring for seal housing. O-ring for seal housing is only for double seal arrangements

- E EPDM
- F FXM (Fluoraz®)
- K FFKM (Kalrez®)
- M FEPS (PTFE-sheathed silicone O-ring)
- V FKM (Viton®)
- X HNBR

Shaft seal arrangement

- B Stuffing box
- C Cartridge seal, single
- D Cartridge seal, double
- O Back-to-back, double seal
- P Tandem, double seal
- S Single seal

Shaft seal(s) in pump

Letter or digit code for mechanical shaft seal and shaft seal rubber parts

4 letters: Single mechanical shaft seal, such as BQQE, or single cartridge seal, such as HBQV

4 digits: Double seal solution; example 2716, where 27 is DQQV, primary seal, and 16 is BQQV, secondary seal; double cartridge seal; example 5150, where 51 is HQQU, primary seal, and 50 is HBQV, secondary seal

The relation between letters and digits of the shaft seals is described on page 6.

Example 1 shows an NK 32-125.1 pump with these characteristics:

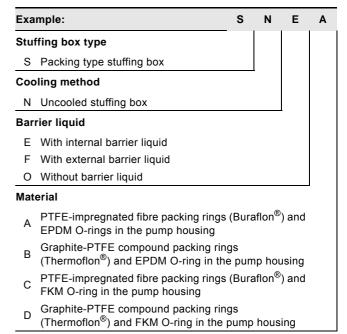
- reduced performance
- 142 mm impeller
- grease-lubricated standard bearing design
- · standard coupling
- · DIN flange to EN 1092-2 pipework connection
- · 10 bar flange pressure rating
- cast iron pump housing, EN-GJL-250
- cast iron impeller, EN-GJL-200
- bronze/brass wear ring
- stainless steel shaft, EN 1.4021/1.4034
- · EPDM O-ring for pump cover
- · single shaft seal arrangement
- BAQE shaft seal

- · 210-170 mm conical impeller
- · grease-lubricated heavy-duty bearing design
- · spacer coupling
- DIN flange to EN 1092-2 pipework connection
- · 25 bar flange pressure rating
- · stainless steel pump housing, EN 1.4408
- stainless steel impeller, EN 1.4408
- carbon-graphite-filled PTFE (Graflon[®]) wear ring
- · stainless steel shaft, EN 1.4401
- · FFKM O-rings for pump cover and seal cover
- · EPDM O-ring for seal housing
- · back-to-back double shaft seal arrangement
- primary shaft seal: DQQK
- secondary shaft seal: DQQE

4.2.1 Codes for shaft seals

The digits are only used for double shaft seal solutions.

The digits are only used for double shall seal solutions.								
Digits	Letters	Description						
10	BAQE	Single mechanical shaft seal						
11	BAQV	Single mechanical shaft seal						
12	BBQE	Single mechanical shaft seal						
13	BBQV	Single mechanical shaft seal						
14	BQBE	Single mechanical shaft seal						
15	BQQE	Single mechanical shaft seal						
16	BQQV	Single mechanical shaft seal						
17	GQQE	Single mechanical shaft seal						
18	GQQV	Single mechanical shaft seal						
19	AQAE	Single mechanical shaft seal						
20	AQAV	Single mechanical shaft seal						
21	AQQE	Single mechanical shaft seal						
22	AQQV Single mechanical shaft seal							
23	AQQX	Single mechanical shaft seal						
24	AQQK	Single mechanical shaft seal						
25	DAQF	Single mechanical shaft seal						
26	DQQE	Single mechanical shaft seal						
27	DQQV	Single mechanical shaft seal						
28	DQQX	Single mechanical shaft seal						
29	DQQK	Single mechanical shaft seal						
50	HBQV	Cartridge seal						
51	HQQU	Cartridge seal						
52	HAQK	Cartridge seal						
	SNEA	Stuffing box						
	SNEB	Stuffing box						
	SNEC	Stuffing box						
	SNED	Stuffing box						
	SNOA	Stuffing box						
	SNOB	Stuffing box						
	SNOC	Stuffing box						
	SNOD Stuffing box							
	SNFA	Stuffing box						
	SNFB	Stuffing box						
	SNFC	Stuffing box						
	SNFD	Stuffing box						


4.2.2 Letter codes for shaft seals

Exa	mple: 10 is BAQE	Α	Q	Ε	
Sha	ft seal type				
Α	O-ring seal with fixed driver				
В	Rubber bellows seal				
D	O-ring seal, balanced				
G	Bellows seal, type B, with reduced seal faces				
Н	Cartridge seal, balanced				
Mate	erial, rotating seal face				
Α	Carbon, metal-impregnated with antim which is not approved for potable water				
В	Carbon, resin-impregnated				
Q	Silicon carbide				

Exa	mple: 10 is BAQE	В	Α	Q	E			
Material, stationary seat								
Α	A Carbon, metal-impregnated with antimony which is not approved for potable water							
В	Carbon, resin-impregnated							
Q	Silicon carbide							
Material, secondary seal and other rubber and composite parts, except the wear ring								
E EPDM								
V	/ FKM (Viton [®])							
F	FXM (Fluoraz®)							
K	FFKM (Kalrez [®])							
Χ	HNBR							
U	U Dynamic O-rings in FFKM and static O-rings in PTFE							

For a thorough description of shaft seal types and materials, see the data booklet "NB, NBG, NK, NKG, NBE, NBGE, NKE, NKGE - Custom-built pumps according to EN 733 and ISO 2858".

4.2.3 Letter codes for stuffing boxes

For a thorough description of stuffing boxes and materials, see the data booklet "NB, NBG, NK, NKG, NBE, NBGE, NKE, NKGE - Custom-built pumps according to EN 733 and ISO 2858".

5. Applications

5.1 Pumped liquids

Clean, thin, non-explosive liquids without solid particles or fibres. The pumped liquid must not attack the pump materials chemically.

6. Operating conditions

6.1 Ambient temperature and altitude

The ambient temperature and the installation altitude are important factors for the motor life as they affect the life of the bearings and the insulation system.

If the ambient temperature exceeds the recommended maximum ambient temperature or the installation altitude exceeds the recommended maximum altitude above sea level, see fig. 4, the motor must not be fully loaded due to the low density and consequently low cooling effect of the air. In such cases, it may be necessary to use a motor with a higher output.

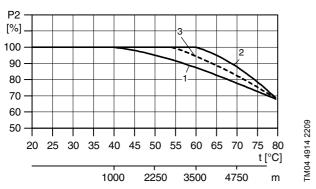
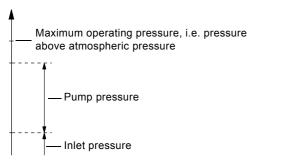


Fig. 4 The maximum motor output depends on the ambient temperature and altitude

Legend

_						
	Pos.	Description				
1 0.25 - 0.55 kW MG motors						
	2	0.75 - 22 kW MG motors, IE2/IE3				
	2	0.75 - 450 kW MMG-H motors, IE2				
3 0.75 - 462 kW Siemens motors, IE2						

Example: A pump with a 1.1 kW IE2 MG motor: If this pump is installed 4750 m above sea level, the motor must not be loaded more than 88 % of the rated output. At an ambient temperature of 75 $^{\circ}$ C, the motor must not be loaded more than 78 % of the rated output. If the pump is installed 4750 m above sea level at an ambient temperature of 75 $^{\circ}$ C, the motor must not be loaded more than 88 % x 78 % equal to 68.6 % of the rated output.


6.2 Liquid temperature

-40 - +140 °C.

The maximum liquid temperature is stated on the pump nameplate. It depends on the shaft seal chosen.

For EN-GJL-250 cast iron pump housings, local regulations may not allow liquid temperatures above +120 °C.

6.3 Maximum operating pressure

FM04 0062 4907

Fig. 5 Pressures in the pump

The inlet pressure + the pump pressure must be lower than the maximum operating pressure stated on the pump nameplate. Operation against a closed discharge valve gives the highest operating pressure.

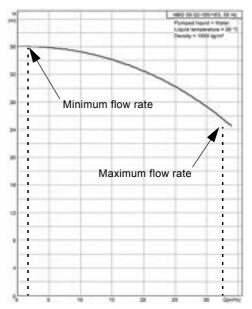
6.4 Minimum inlet pressure

Pay attention to the minimum inlet pressure to avoid cavitation. The risk of cavitation is higher in the following situations:

- The liquid temperature is high.
- The flow rate is considerably higher than the pump's rated flow rate.
- The pump is operating in an open system with suction lift.
- The liquid is sucked through long pipes.
- The inlet conditions are poor.
- · The operating pressure is low.

6.5 Maximum inlet pressure

The inlet pressure + the pump pressure must be lower than the maximum operating pressure stated on the pump nameplate. Operation against a closed discharge valve gives the highest operating pressure.


6.6 Minimum flow rate

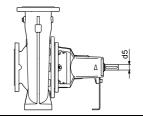
The pump must not run against a closed discharge valve as this will cause an increase in temperature/formation of steam in the pump. This may cause shaft damage, impeller erosion, short life of bearings and damage to stuffing boxes or mechanical shaft seals due to stress or vibration. The continuous flow rate must be at least 10 % of the rated flow rate. The rated flow rate is stated on the pump nameplate.

6.7 Maximum flow rate

The maximum flow rate must not be exceeded as otherwise there is a risk of for instance cavitation and overload.

The minimum and maximum flow rates can be read either from the performance curve pages in the relevant data booklets or from a curve for a specific pump when selecting it in Grundfos Product Center.

ig. 6 Example from Grundfos Product Center showing minimum and maximum flow rate


TM05 2444 5111

6.8 Shaft seals

Mechanical shaft seals

The operating range of the seals is described for two main applications: pumping of water or pumping of coolants. Seals with a temperature range of 0 $^{\circ}\text{C}$ and up are mainly used for pumping water, while seals for temperatures below 0 $^{\circ}\text{C}$ are mainly intended for coolants.

Note: We do not recommend operation at maximum temperature and maximum pressure at the same time as the seal life will be reduced and periodical noise will occur.

Shaft seal diameter [mm]	28, 38	48	55	60
d5 [mm]	24, 32	42	48	60

Shaft seal type		Seal faces	Rubber	Code	Temperature range	Max. pressure [bar]					
		AQ ₁	EPDM	BAQE	0-120 °C	16	16	16	16		
		AQ ₁	FKM	BAQV	0-90 °C	16	16	16	16		
		BQ ₁	EPDM	BBQE	0-120 °C	16	16	16	16		
	Bellows seal, type B, unbalanced	BQ ₁	FKM	BBQV	0-90 °C	16	16	16	16		
		Q ₁ B	EPDM	BQBE	0-100 °C	16	-	-	-		
		Q ₇ Q ₇	EPDM	BQQE	-25 - +120 °C	16	16	16	16		
		Q ₇ Q ₇	FKM	BQQV	-10 - +90 °C	16	16	16	16		
	Bellow seal, type B, unbalanced	Q_1Q_1	EPDM	GQQE	-25 - +60 °C	16	16	16	16		
	with reduced seal faces	Q_1Q_1	FKM	GQQV	-10 - +60 °C	16	16	16	16		
		Q ₁ A	EPDM	AQAE	0-120 °C	16	16	16	16		
		Q ₁ A	FKM	AQAV	0-90 °C	16	16	16	16		
	O ring and tune A unbalanced	Q_1Q_1	EPDM	AQQE	-25 - +90 °C	16	16	16	16		
	O-ring seal, type A, unbalanced	Q_1Q_1	FKM	AQQV	-10 - +90 °C	16	16	16	16		
		Q_1Q_1	HNBR	AQQX	-15 - +90 °C	16	16	16	16		
		Q_1Q_1	FFKM	AQQK	0-90 °C	16	16	16	16		
		AQ ₁	FXM	DAQF	0-140 °C	25	25	25	25		
		Q_6Q_6	EPDM	DQQE	-20 - +120 °C	25	25	25	25		
	O-ring seal, type D, balanced	Q_6Q_6	FKM	DQQV	-10 - +90 °C	25	25	25	25		
		Q_6Q_6	HNBR	DQQX	-15 - +120 °C	25	25	25	25		
		Q_6Q_6	FFKM	DQQK	0-120 °C	25	25	25	25		

Stuffing box

	Code	Temperature range	Max. pressure [bar]
Stuffing box without cooling, with internal barrier liquid Stuffing box without cooling, without barrier liquid Stuffing box without cooling, with external barrier liquid	SNE SNO SNF	-30 - +120 °C	16

TM03 4324 1206

TM03 4587 2206

7. Mechanical installation

7.1 Pump location

The pump must be sited in a well-ventilated, but frost-free location.

Warning

When pumping hot or cold liquids, make sure that persons cannot accidentally come into contact with hot or cold surfaces.

For inspection and repair, allow suitable clearances for pump or motor removal.

- Pumps fitted with motors up to and including 4 kW require a 0.3 m clearance behind the motor.
- Pumps fitted with motors of 5.5 kW and up require a 0.3 m clearance behind the motor and at least a 1 m clearance above the motor to allow the use of lifting equipment.

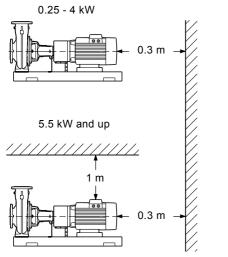


Fig. 7 Clearance behind the motor

7.2 Foundation and grouting of horizontally mounted NK, NKG pumps with base frame

We recommend that you install the pump on a plane and rigid concrete foundation which is heavy enough to provide permanent support for the entire pump. The foundation must be capable of absorbing any vibration, normal strain or shock. As a rule of thumb, the weight of the concrete foundation must be 1.5 times the weight of the pump.

The foundation must be 100 mm larger than the base frame on all four sides. See fig. 8.

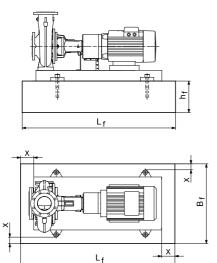


Fig. 8 Foundation, X equal to minimum 100 mm

The minimum height of the foundation, h_f, can then be calculated:

$$h_f = \frac{m_{pump} \times 1.5}{L_f \times B_f \times \delta_{concrete}}$$

The density, δ , of concrete is usually taken as 2,200 kg/m³. Place the pump on the foundation, and fasten it. The base frame must be supported under its entire area. See fig. 9.

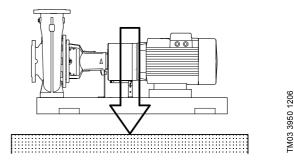


Fig. 9 Correct foundation

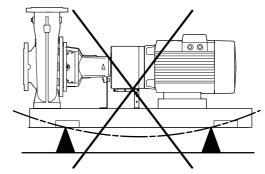


Fig. 10 Incorrect foundation

TM05 3727 1612

TM03 3771 1206

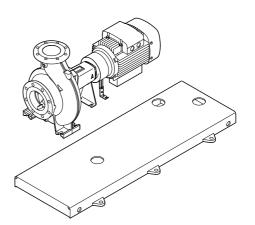


Fig. 11 Base frame with pouring holes

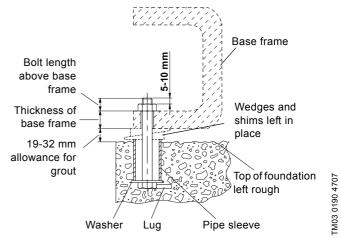
It is important to prepare a good foundation prior to the installation of the pump.

NK, NKG pumps with base frame are always prepared for grouting.

For NK, NKG pumps with 2-pole motors equal to or bigger than 55 kW, grouting of the base frame is mandatory in order to prevent vibration energy from the rotating motor and liquid flow to evolve

	P2 lower than or equal to 45 kW	P2 equal to or higher than 55 kW				
2-pole	Grouting optional	Grouting mandatory				
4-pole	Groutin	g optional				
6-pole	Groutin	Grouting optional				

7.2.1 Procedure


- 1. Preparing the foundation
- 2. Levelling of the base frame
- 3. Preliminary alignment
- 4. Grouting
- 5. Final alignment according to section 7.3 Alignment.

1: Preparing the foundation

We recommend the following procedure to ensure a good foundation.

Step	Action	Illustration	
1	Use an approved, non-shrinking concrete. Contact your concrete supplier for advice if any doubts. Pour the foundation without interruptions to within 19 to 32 mm of the final level. Use vibrators to ensure that the concrete is evenly distributed. The top surface must be well scored and grooved before the concrete sets. This provides a bonding surface for the grout.		

Embed foundation bolts in the concrete. Allow enough bolt length to reach through grout, shims, lower base frame, nuts and washers.

Let the foundation cure for several days before the base frame is levelled and grouted.

2: Levelling of the base frame

Lift/jack up the base frame to the final level 19-32 mm above the concrete foundation, and support the base frame by means of blocks and shims both at the foundation bolts and midway between bolts.

Level the base frame by adding or removing shims under the base frame.

Tighten the foundation bolt nuts against the base frame.

Tighten the foundation bolt nuts against the base frame.

Make sure the piping can be aligned to the pump flanges without putting strain on pipes or flanges.

3: Preliminary alignment

Warning

Before starting work on the pump, make sure that the power supply has been switched off and cannot be accidentally switched on again.

The pump and motor are pre-aligned on the base frame from the factory. Some deformation of the base frame may occur during transport and it is therefore essential to check the alignment at the installation site prior to final grouting.

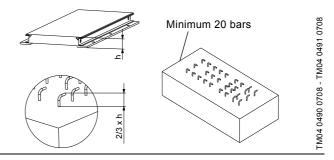
A flexible coupling will only compensate for minor misalignments and must not be used to compensate for excessive misalignment of the pump and motor shafts. Inaccurate alignment results in vibration and excessive wear on the bearings, shaft or wear rings.

Warning

Carry out alignment of the motor only, as pipe strain will occur if the pump is shifted.

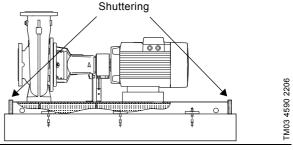
Carry out alignment of the motor by placing shims of different thickness under the motor. If possible, replace several thin shims with one thick shim.

See section 7.3 Alignment.


4: Grouting

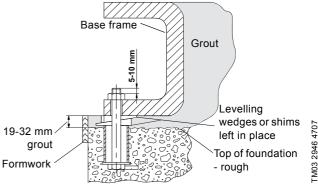
Grouting compensates for an uneven foundation, distributes the weight of the unit, dampens vibrations and prevents shifting. Use an approved, non-shrinking grout. If you have questions or doubts about the grouting, please contact an expert on grouting.

Step Action Illustration


Embed reinforcing steel bars into the foundation by means of 2K anchor adhesive glue.

The number of steel bars depends on the size of the base frame, but it is advisable to distribute a minimum of 20 bars evenly over the whole area of the base frame. The free end of the steel bar must be 2/3 the height of the base frame to ensure a proper grouting.

Soak top of concrete foundation thoroughly, then remove surface water.


3 Ensure proper shuttering at both ends of the base frame.

If necessary, check the levelling of the base frame again before grouting. Pour non-shrinking grout through the openings of the base frame until the space underneath the base frame has been filled completely.

Fill the formwork with grout up to the base frame top level. Allow the grout to dry thoroughly before attaching piping to the pump. 24 hours is sufficient time with approved grouting procedure.

When the grout has thoroughly hardened, check the foundation bolt nuts, and tighten, if necessary. Approximately two weeks after the grout has been poured, or when the grout has thoroughly dried, apply an oil-based paint to the exposed edges of the grout to prevent the grout from getting into contact with air and moisture.

7.3 Alignment

7.3.1 General information

When a complete unit is supplied assembled from the factory, the coupling halves have been accurately aligned by means of foil inserted under the pump and motor mounting surfaces as required.

As the pump/motor alignment may be affected during transport and installation, it must always be checked again before starting the pump.

It is important to check the final alignment when the pump has obtained its operating temperature under normal operating conditions.

7.3.2 How to align the unit

It is very important that the pump/motor alignment is carried out correctly. Follow the procedure below.

The values for \varnothing and S2 can be found in the following table. The value for S1 is 0.2 mm.

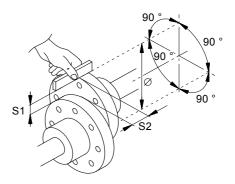


Fig. 12 Alignment

Aligning the pump and motor with a straight-edge ruler

1007

TM03 8340

TM03 8301 1007

TM03 8302

Step Action

1

Make a rough alignment of pump and motor, and tighten the screws in the base frame to the correct torque. See the table *Tightening torques* on page 15.

2

Make a mark on the coupling, for instance with a marker pen.

2

Hold a straight-edge ruler against the coupling, and determine the inaccuracy, if any, with a feeler gauge.

4

Turn the coupling 90 °, and repeat the measurement with straight-edge and feeler gauge. If the measured values are less than 0.2 mm, the alignment is complete. Go to step 8.

Step Action

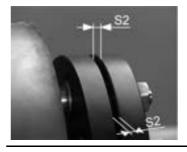
5

Adjust the position of the motor. Loosen the screws that hold the motor in place. TM01 8753 0800

6

Insert shims with the required thickness.

FM03 8322 1007


TM03 8324

7

Tighten the screws to the correct torque. Go to step 3, and check the alignment once more.

Q

Check the gap S2 both vertically and horizontally. See the table *Air-gap width S2* on page 15. If the air-gap width is within the tolerances, the alignment is complete. If not, go to step 6.

Aligning the pump and motor with laser equipment

Step Action

9

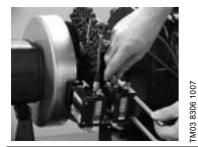
Make a rough alignment of pump and motor, and tighten the screws in the base frame to the correct torque. See the table *Tightening torques* on page 15.

10

Fasten one laser bracket to the pump coupling.

TM03 8303 1007

11


Fasten the other laser bracket to the motor coupling.

12

Place laser unit S, stationary, on the stationary part and laser unit M, movable, on the movable part.

13

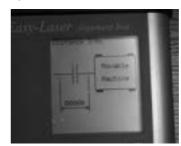
Interconnect the laser units, and connect one laser unit to the control box.

14

Make sure that the laser units are at the same height.

TM03 8307 1007

Step


15

Measure the distance between the white lines on the laser units.

Action

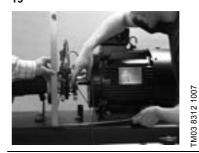
16

Enter the distance.

TM03 8308 1007

17

Measure the distance between the S unit and the centre of the gap between the couplings.


18

Enter the distance.

TM03 8311 1007

19

Measure the distance from the S unit to the first screw on the motor.

20

Enter the distance.

Step Action

21

Measure the distance from the S unit to the rear screw on the motor.

22

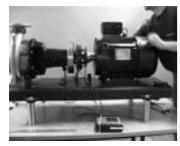
The control box shows that the laser units must be turned to position 9 o'clock.

23

Turn the laser units to position 9 o'clock.

FM03 8316 1007

24


Confirm on the control box.

25

Turn the laser units to position 12 o'clock. Confirm on the control box.

26

Turn the laser units to position 3 o'clock. Confirm on the control box.

TM03 8318 1007

Step

27

If the measured values are less than 0.1 mm, the alignment is complete. Go to step 32.

Action

28

Adjust the position of the motor. Loosen the screws that hold the motor in place.

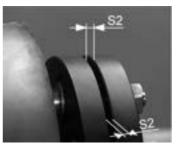
29

Insert shims with the required thickness.

TM03 8322 1007

TM03 8324 1007

30


Tighten the screws to the correct torque again.

31

Repeat the alignment until the values are within the tolerances. Go to step 22.

32

Check the gap S2. See the table *Air-gap width* S2 on page 15.

TM05 3488 1412

Tightening torques

Description	Dimensions	Tightening torque [Nm]
	M6	10 ± 2
	M8	12 ± 2.4
	M10	23 ± 4.6
Hexagon head screw	M12	40 ± 8
Sciew	M16	80 ± 16
	M20	120 ± 24
	M24	120 ± 24

Air-gap width S2

Outside coupling	Air-gap width S2 [mm]				
diameter	Standard	d coupling	Spacer	coupling	
[mm]	Nominal	Tolerance	Nominal	Tolerance	
80	-	-	4	0/-1	
95	-	-	4	0/-1	
110	-	-	4	0/-1	
125	4	0/-1	4	0/-1	
140	4	0/-1	4	0/-1	
160	4	0/-1	4	0/-1	
200	4	0/-1	6	0/-1	
225	4	0/-1	6	0/-1	
250	4	0/-1	8	0/-1	

Note

Measure S2 all the way around the coupling. The maximum permissible deviation between the largest and the smallest measurement is 0.2 mm.

If the coupling and motor are not supplied by Grundfos, make sure to follow the coupling manufacturer's instructions.

Warning

The coupling guard must always be fitted during operation.

7.4 Pipework

7.4.1 Piping

When installing the pipes, make sure that the pump housing is not stressed by the pipework.

The suction and discharge pipes must be of an adequate size, taking the pump inlet pressure into account.

Install the pipes so that air locks are avoided, especially on the suction side of the pump.

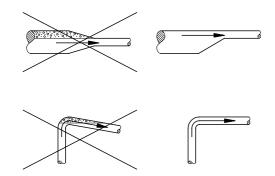


Fig. 13 Pipelines

Fit isolating valves on either side of the pump to avoid having to drain the system if the pump needs to be cleaned or repaired. Make sure the pipes are adequately supported as close to the pump as possible, both on the suction and the discharge side. The counter-flanges must lie true against the pump flanges without being stressed as stress would cause damage to the pump.

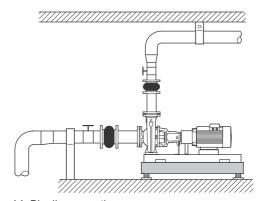


Fig. 14 Pipeline mounting

7.4.2 Bypass

Warning

The pump is not allowed to run against a closed valve as this will cause an increase in temperature/ formation of steam in the pump which may cause damage to the pump.

If there is any danger of the pump running against a closed discharge valve, ensure a minimum liquid flow through the pump by connecting a bypass or drain to the discharge pipe. The minimum flow rate must be at least 10 % of the maximum flow rate. The flow rate and head are stated on the pump nameplate.

7.5 Vibration damping

7.5.1 Elimination of noise and vibrations

In order to achieve optimum operation and minimum noise and vibration, consider vibration damping of the pump. Generally, always consider this for pumps with motors of 11 kW and up. Vibration damping is mandatory for motors of 90 kW and up. Smaller motor sizes, however, may also cause undesirable noise and vibration.

Noise and vibration are generated by the revolutions of the motor and pump and by the flow in pipes and fittings. The effect on the environment is subjective and depends on correct installation and the state of the rest of the system.

Elimination of noise and vibrations is best achieved by means of a concrete foundation, vibration dampers and expansion joints. See fig. 14.

7.5.2 Vibration dampers

FM00 2263 3393

To prevent the transmission of vibrations to buildings, we recommend isolating the pump foundation from building parts by means of vibration dampers.

The selection of the right vibration damper requires the following data:

- · forces transmitted through the damper
- motor speed, taking speed control, if any, into consideration
- · required damping in % suggested value is 70 %.

The selection of vibration damper differs from installation to installation. In certain cases, a wrong damper may increase the vibration level. Vibration dampers must therefore be sized by the supplier of the vibration dampers.

If you install the pump on a foundation with vibration dampers, always fit expansion joints on the pump flanges. This is important to prevent the pump from "hanging" in the flanges.

7.6 Expansion joints

Expansion joints provide these advantages:

- absorption of thermal expansion and contraction of pipework caused by variations in liquid temperature
- reduction of mechanical influences in connection with pressure surges in the pipework
- isolation of structure-borne noise in the pipework; this applies only to rubber bellows expansion joints.

Note

Do not install expansion joints to make up for inaccuracies in the pipework, such as centre displacement or misalignment of flanges.

The expansion joints must be fitted at a minimum distance of 1 to 1 1/2 pipe diameters away from the pump on the suction and the discharge side. This prevents turbulence in the joints, thus ensuring optimum suction conditions and minimum pressure loss on the discharge side. At flow velocities greater than 5 m/s, we recommend fitting larger expansion joints matching the pipework. Figures 15 and 16 show examples of rubber bellows expansion joints with or without limiting rods.

Fig. 15 Rubber bellows expansion joint with limiting rods

Fig. 16 Rubber bellows expansion joint without limiting rods

Expansion joints with limiting rods can be used to reduce the effects of the expansion/contraction forces on the pipework. We always recommend expansion joints with limiting rods for flanges larger than DN 100.

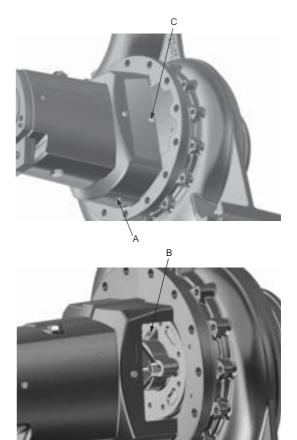
Anchor the pipes in such a way that they do not stress the expansion joints and the pump. Follow the supplier's instructions and pass them on to advisers or pipe installers.

Figure 17 shows an example of a metal bellows expansion joint with limiting rods.

TM02 4980 1902

Fig. 17 Metal bellows expansion joint with limiting rods

Due to the risk of rupture of the rubber bellows, metal bellows expansion joints may be preferred at temperatures above +100 °C combined with high pressure.


7.7 Stuffing box piping

TM02 4979 1902

M02 4981 1902

Pumps with stuffing box will always have a continuous leakage during normal operation. We recommend to connect a drainage pipe to the drain hole of the bearing bracket, pos. A, G1/2, to collect the leaking liquid.

For pumps with stuffing box, type SNF, and external barrier liquid, connect the drain pipe to the hole, pos. B, G1/8, before starting the pump. The outlet hole for the external flushing pipe, pos. C, is $\varnothing 10$

TM06 3413 0315 - TM06 3414 0315

Fig. 18 Pipe connections for stuffing box operation

TM05 3612 1612

7.8 Bearing bracket

7.8.1 Bearing bracket with grease lubrication

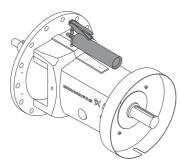


Fig. 19 Bearing bracket with grease nipples

Relubricate the bearings by means of a grease gun. See section 11.2.1 Grease-lubricated bearings to get recommended relubricating intervals.

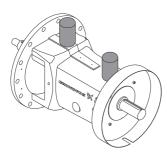


Fig. 20 Bearing bracket with automatic grease lubricators

The lubricators are supplied separately. Remove the grease nipples, fit the grease lubricators on top of the bearing bracket and set them to empty within 12 months according to the instructions supplied with the lubricators.

7.8.2 Bearing bracket with constant-level oiler

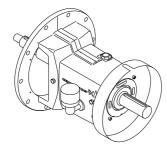


Fig. 21 Bearing bracket with constant-level oiler

Caution There is no oil in bearing bracket when it is delivered.

Fit the constant-level oiler on the bearing bracket

Note before filling oil into the bearing bracket. See instructions on the label on the reservoir.

Filling of oil

TM06 1826 3014

FM04 5173 3014

TM04 5174 2709

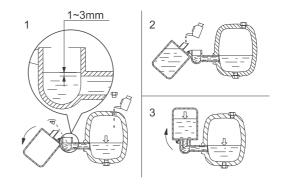


Fig. 22 Filling of oil

Step	Action
1	Remove the filling plug.
2	Hinge down the constant-level oiler, and pour the oil through the filling hole until the oil reaches level in the connection elbow. See 1 in fig. 22.
3	Fill the reservoir of the constant-level oiler with oil, and snap it back into operating position. Now oil will be filled into the bearing bracket. Air bubbles can be seen in the reservoir during this process. Continue until the correct oil level is reached. See 2 in fig. 22.
4	When no bubbles appear in the reservoir, refill the reservoir, and snap it back into operating position. See 3 in fig. 22.
5	Fit the filling plug.

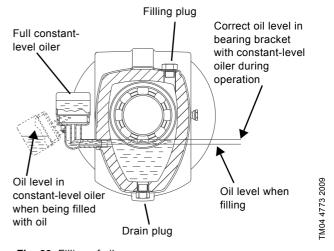


Fig. 23 Filling of oil

The oil level in the bearing bracket must always be as shown in fig. 23.

Caution

Check the oil level regularly during operation, and add oil, if necessary. The oil level must always be visible in the sight glass.

Checking the oil level

The oil level in the bearing bracket will be correct as long as the function of the constant-level oiler is correct. To check the function of the constant-level oiler, slowly drain oil through the drain plug until the constant-level oiler starts to operate, i.e. until air bubbles can be seen in the reservoir.

7.9 Bearing monitoring

7.9.1 Vibration level

The vibration level gives an indication of the condition of the bearings.

Bearing brackets with constant-level oiler are prepared for vibration measurement by means of the shock pulse method (SPM). See fig. 24.

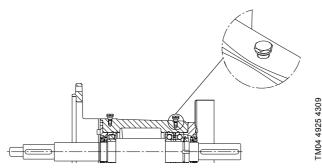


Fig. 24 Bearing bracket with SPM measuring points

Bearing brackets with automatic grease lubricators or grease nipples are prepared for retrofitting of SPM fittings. Holes are plugged from factory. See fig. 25.

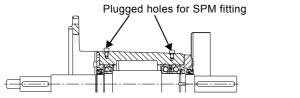


Fig. 25 Bearing bracket for retrofitting of SPM measuring equipment

7.9.2 Temperature

Bearing brackets with automatic grease lubricators, grease nipples or constant-level oiler have tappings for Pt100 sensors for monitoring the temperature of the bearings.

These sensors can be factory-fitted, but can also be retrofitted. A Grundfos sensor is available.

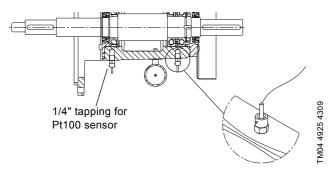


Fig. 26 Pt100 sensors fitted in bearing bracket

7.10 Pressure gauge and mano-vacuum gauge

To ensure continuous monitoring of the operation, we recommend installing a pressure gauge on the discharge side and a manovacuum gauge on the suction side. Open the pressure gauge tappings only for test purposes. The measuring range of the gauges must be 20 % above the maximum pump discharge pressure.

When measuring with pressure gauges on the pump flanges, it must be noted that a pressure gauge does not register dynamic pressure. On all NK and NKG pumps, the diameters of the suction and discharge flanges are different which results in different flow velocities at the two flanges. Consequently, the pressure gauge on the discharge flange will not show the pressure stated in the technical documentation, but a value which may be up to 1.5 bar or approx. 15 m lower.

7.11 Ammeter

TM06 3500 0415

To check the motor load, we recommend connecting an ammeter.

8. Flange forces and torques

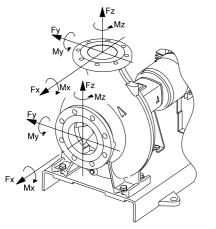


Fig. 27 Flange forces and torques

Crov coot iron	Diameter		Forc	e [N]			Torqu	e [Nm]	
Grey cast iron	DN	Fy	Fz	Fx	ΣF*	Му	Mz	Mx	ΣΜ*
	32	298	368	315	578	263	298	385	560
	40	350	438	385	683	315	368	455	665
	50	473	578	525	910	350	403	490	718
	65	595	735	648	1155	385	420	525	770
	80	718	875	788	1383	403	455	560	823
Horizontal pump, z- axis, discharge port	100	945	1173	1050	1838	438	508	613	910
axis, discriarge port	125	1120	1383	1243	2170	525	665	735	1068
150 200 250	150	1418	1750	1575	2748	613	718	875	1278
	200	2600	2100	2095	4055	805	928	1138	1680
	250	3340	2980	2700	5220	1260	1460	1780	2620
	300	4000	3580	3220	6260	1720	1980	2420	3560
	50	525	473	578	910	350	403	490	718
	65	648	595	735	1155	385	420	525	770
	80	788	718	875	1383	403	455	560	823
	100	1050	945	1173	1838	438	508	613	910
Horizontal pump, x-	125	1243	1120	1383	2170	525	665	735	1068
axis, suction port	150	1575	1418	1750	2748	613	718	875	1278
	200	2100	1890	2345	3658	805	928	1138	1680
	250	2700	3340	2980	5220	1260	1460	1780	2620
	300	3220	4000	3580	6260	1720	1980	2420	3560
•	350	3760	4660	4180	7300	2200	2540	3100	4560

TM04 5621 3609

Stainless steel	Diameter		Forc	e [N]			Torqu	e [Nm]	
Stainless steel	DN	Fy	Fz	Fx	ΣF*	Му	Mz	Mx	ΣΜ*
	32	595	735	630	1155	525	595	770	1120
	40	700	875	770	1365	630	735	910	1330
	50	945	1155	1050	1820	700	805	980	1435
Horizontal pump, z-	65	1190	1470	1295	2310	770	840	1050	1540
axis, discharge port	80	1435	1750	1575	2765	805	910	1120	1645
	100	1890	2345	2100	3675	875	1015	1225	1820
	125	2240	2765	2485	4340	1050	1330	1470	2135
	150	2835	3500	3150	5495	1225	1435	1750	2555
	50	1050	945	1155	1820	700	805	980	1435
	65	1295	1190	1470	2310	770	840	1050	1540
Hadaatal assas	80	1575	1435	1750	2765	805	910	1120	1645
Horizontal pump, x- axis, suction port	100	2100	1890	2345	3675	875	1015	1225	1820
	125	2485	2240	2765	4340	1050	1330	1470	2135
	150	3150	2835	3500	5495	1225	1435	1750	2555
	200	4200	3780	4690	7315	1610	1855	2275	3360

 $^{^{\}star}$ ΣF and ΣM are the vector sums of the forces and torques.

If not all loads reach the maximum permissible value, one of the values is allowed to exceed the normal limit. Contact Grundfos for further information.

9. Electrical connection

The electrical connection must be carried out by a qualified electrician in accordance with local regulations.

Warning

Before removing the terminal box cover and before removing/dismantling the pump, make sure that the power supply has been switched off and that it cannot be accidentally switched on again.

The pump must be connected to an external mains switch

The operating voltage and frequency are stated on the nameplate. Make sure that the motor is suitable for the power supply of the installation site.

The electrical connection must be carried out as shown in the wiring diagram inside the terminal box cover.

Warning

Whenever powered equipment is used in explosive surroundings, the rules and regulations generally or specifically imposed by the relevant responsible authorities or trade organisations must be observed.

9.1 Motor protection

Three-phase motors must be connected to a motor-protective circuit breaker.

All three-phase Grundfos MG and MMG motors of 3 kW and up incorporate a thermistor. See the instructions in the motor terminal box.

Carry out the electrical connection as shown in the wiring diagram on the back side of the terminal box cover.

Warning

Before starting any repair work on motors incorporating a thermal switch or thermistors, make sure that the motor cannot restart automatically after cooling.

9.2 Frequency converter operation

All three-phase motors can be connected to a frequency converter.

Frequency converter operation will often expose the motor insulation system to a heavier load and cause the motor to be more noisy than usual due to eddy currents caused by voltage peaks.

A large motor driven via a frequency converter will be loaded by bearing currents.

Check these operating conditions if the pump is driven via a frequency converter:

Operating conditions	Action
2-, 4- and 6-pole motors, frame size 225 and larger	Check that one of the motor bearings is electrically isolated. Contact Grundfos.
Noise critical applications	Fit an output filter between the motor and the frequency converter; this reduces the voltage peaks and thus the noise.
Particularly noise critical applications	Fit a sinusoidal filter.
Cable length	Fit a cable that meets the specifications laid down by the frequency converter supplier. The length of the cable between motor and frequency converter affects the motor load.
Supply voltage up to 500 V	Check that the motor is suitable for frequency converter operation.
Supply voltage between 500 V and 690 V	Fit a sinusoidal filter between the motor and the frequency converter which reduces the voltage peaks and thus the noise, or check that the motor has reinforced insulation.
Supply voltage of 690 V and higher	Fit a sinusoidal filter and check that the motor has reinforced insulation.

10. Commissioning and startup

Do not start the pump until it has been filled with liquid and vented.

10.1 General information

Warning

When pumping drinking water, the pump must be flushed through with clean water before startup in order to remove any foreign matters such as preservatives, test liquid or grease.

10.1.1 Pumps with stuffing box

In the case of pumps with stuffing box, check that the stuffing box gland is correctly fitted. It must be possible to turn the pump shaft manually. If the pump has been inactive for a long period, turn it manually to make sure it has not got stuck. Loosen the stuffing box or remove the packing.

10.2 Commissioning

10.2.1 Flushing the pipe system

The pump is not designed to pump liquids containing solid particles such as pipe debris and welding slag. Before starting up the pump, the pipe system must be thoroughly cleaned, flushed and filled with clean water.

Caution

The warranty does not cover any damage caused by flushing the pipe system by means of the pump.

10.3 Priming

Closed systems or open systems where the liquid level is above the pump inlet

- Close the discharge isolating valve and slowly open the isolating valve in the suction pipe. Both the pump and the suction pipe must be completely filled with liquid.
- 2. Loosen the priming plug in order to vent the pump. Once liquid runs out, tighten the priming plug.

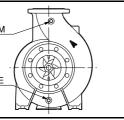
Warning

Pay attention to the orientation of the priming hole to ensure that the escaping water does not cause personal injury or damage to the motor or other components.

In hot-liquid installations, pay special attention to the risk of personal injury caused by scalding hot liquid. In cold-liquid installations, pay special attention to the risk of personal injury caused by cold liquid.

Suction operation with non-return valve

The suction pipe and the pump must be filled with liquid and vented before the pump is started.


- 1. Close the discharge isolating valve and slowly open the isolating valve in the suction pipe.
- 2. Remove the priming plug, M.
- Pour liquid through the hole until the suction pipe and the pump are completely filled with liquid.
- 4. Fit the priming plug, M.

The suction pipe may be filled and vented via the priming plug. See fig. 28. Alternatively a priming device with funnel can be installed before the pump.

Open systems where the liquid level is below the pump inlet

- 1. If an isolating valve is fitted on the suction side of the pump, the valve must be fully open.
- Close the discharge isolating valve and tighten the priming and drain plugs.
- Connect a manual venting pump instead of a priming device with funnel.
- Install a slide valve between the venting pump and the centrifugal pump in order to protect the venting pump against excessive pressure.
- Once the slide valve at the manual venting pump has been opened, vent the suction pipe using short, rapid pump strokes until the liquid runs out on the discharge side.
- 6. Close the valve at the venting pump.

E Drain plug M Priming plug

TM03 3935 1206

Fig. 28 Drain and priming plug

10.4 Checking the direction of rotation

Narning

The pump must be filled with liquid when checking the direction of rotation.

The correct direction of rotation is shown by arrows on the pump housing. Seen from the pump end, the direction of rotation must be counter-clockwise. See fig. 28.

10.5 Startup

Before starting the pump, completely open the isolating valve on the suction side of the pump and leave the isolating valve on the discharge side almost closed.

Start the pump.

Vent the pump during startup by loosening the air vent screw in the pump head/cover until a steady stream of liquid runs out of the vent hole.

Warning

Pay attention to the orientation of the vent hole to ensure that the escaping water does not cause personal injury or damage to the motor or other components.

In hot-liquid installations, pay special attention to the risk of personal injury caused by scalding hot liquid. In cold-liquid installations, pay special attention to the risk of personal injury caused by cold liquid.

When the pipework has been filled with liquid, slowly open the isolating valve on the discharge side until it is completely open.

Caution

If the pump is fitted with a motor with an output selected on the basis of a specific maximum flow rate, the motor may be overloaded if the differential pressure is lower than anticipated.

Check for overload by measuring the motor current consumption and comparing the value with the rated current stated on the motor nameplate. In case of overload, throttle the valve on the discharge side until the motor is no longer overloaded.

Always measure the motor current consumption during startup.

Note

At the moment of start, the input current of the pump motor is up to six times higher than the full-load current stated on the motor nameplate.

10.6 Shaft seal run-in period

The seal faces are lubricated by the pumped liquid, meaning that there may be a certain amount of leakage from the shaft seal. When the pump is started for the first time, or when a new shaft seal is installed, a certain run-in period is required before the leakage is reduced to an acceptable level. The time required for this depends on the operating conditions, i.e. every time the operating conditions change, a new run-in period will be started. Under normal conditions, the leaking liquid will evaporate. As a result, no leakage will be detected.

Liquids such as kerosene will not evaporate, and drops will be visible, but this is not a shaft seal failure.

Mechanical shaft seals

Mechanical shaft seals are precision components. If the mechanical shaft seal of a recently installed pump fails, this will normally happen within the first few hours of operation. The main cause of such failures is improper installation of the shaft seal or the pipe for barrier liquid and/or mishandling of the pump during installation.

Stuffing box

The stuffing box gland must not be too tight during startup in order to let sufficient liquid lubricate the shaft and the packing rings. Once the stuffing box housing and the stuffing box gland have reached approximately the same temperature as the pump parts, the running-in of the stuffing box gland is complete. If the stuffing box leaks too much, retighten the gland slightly and evenly while the pump is running. To ensure continuous lubrication, a few drops should always drop from the stuffing box to protect the packing rings or shaft sleeve. We recommend 40 to 60 drops/minute.

10.7 Motor start/stop

	Max. number of motor starts per hour				
Frame size	Number of poles				
_	2	4	6		
56-71	100	250	350		
80-100	60	140	160		
112-132	30	60	80		
160-180	15	30	50		
200-225	8	15	30		
250-315	4	8	12		

10.8 Reference readings of monitoring equipment

We recommend taking initial readings of these parameters:

- · vibration level use SPM measuring points
- · bearing temperature if sensors have been fitted
- inlet and outlet pressure use pressure gauges.

The readings can be used as reference in case of abnormal operation.

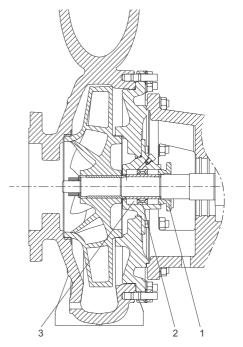
11. Maintenance

Warning

Before starting work on the product, switch off the power supply. Make sure that the power supply cannot be accidentally switched on.

11.1 Pump

The pump is maintenance-free.


11.1.1 Mechanical shaft seals

Mechanical shaft seals are maintenance-free, working almost without any leakages. If any considerable and increasing seepage occurs, the mechanical shaft seal must be checked immediately. If the sliding surfaces are damaged, the entire shaft seal must be replaced. Mechanical shaft seals must be treated with the greatest care.

11.1.2 Stuffing box

If the stuffing box leaks too much and cannot be further tightened, the stuffing box must be repacked. After removal, clean and check the shaft sleeve, chamber and stuffing box gland. For further information, see the service instructions for NK.

11.1.3 Replacement of packing rings

FM06 3415 3515

Fig. 29 Sectional view of a stuffing box

Pos.	Description
1	Stuffing box gland
2	Packing ring
3	Distribution ring

Follow these steps when replacing the packing rings:

- 1. Loosen stuffing box gland and remove it.
- 2. Remove old packing ring, distribution ring, if any, and packing rings behind the distribution ring, using a packing ring hook.
- Insert two new packing rings one at a time. Push them firmly into position, staggering the joints 120 degrees.
- 4. Insert distribution ring, if any.
- For D24/D32, insert one, and for D42/D48/D60, insert two more packing rings, staggering the joints 120 degrees. If no distribution ring is used, two extra packing rings will be required.
- 6. Reinstall stuffing box gland.

Starting the pump with new packing rings

Packing rings require lubrication. Therefore, the stuffing box must always be allowed to leak 40 to 60 drops per minute. Never overtighten the stuffing box gland.

For suction lift applications, it can be necessary to slightly overtighten the gland while starting the pump to avoid air from entering the pump. Air in the pump in this situation will result in the pump being unable to draw the liquid to the pump.

Loosen the gland immediately when the pump delivers liquid allowing a leakage of 40 to 60 drops per minute. Readjust after a few hours of operation if leakage increases.

11.1.4 Shaft sleeve replacement

The shaft sleeve can be worn out as the sleeve life depends on the application. When the leakage is too high even with new packing rings in combination with a slight overtightening, the shaft sleeve needs to be replaced.

11.2 Lubrication of bearings in bearing bracket

11.2.1 Grease-lubricated bearings

Pump with greased-for-life bearings

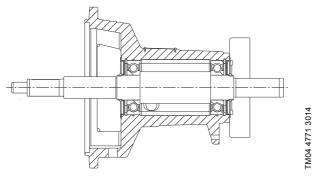


Fig. 30 Bearing bracket with closed, greased-for-life bearings

The bearing bracket with closed, greased-for-life bearings is maintenance-free. Under optimum operating conditions, the bearing life will be approx. 17,500 operating hours. After that period, it is advisable to replace the bearings. See section 13.1 Service kits.

Note

To check the bearings, regularly listen to them by means of a solid rod. There are no SPM measuring points for this type of bearing bracket.

Pump with lubrication nipples or automatic grease lubricators

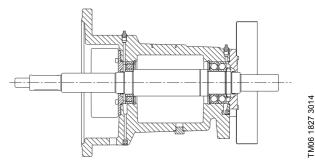


Fig. 31 Bearing bracket with open roller bearing and double angular contact bearing lubricated via grease nipples

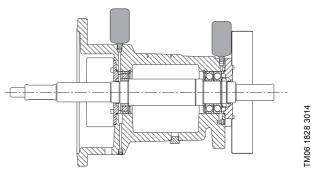


Fig. 32 Bearing bracket with open roller bearing and double angular contact bearing lubricated via automatic grease lubricators

If the pump has grease nipples or automatic grease lubricators, the grease in the bearings must be renewed during the whole life time

Under optimum operating conditions, the bearing life will be approx. 100,000 operating hours. After that period, it is advisable to replace the bearings. See section 13.1 Service kits. New bearings must be filled with grease according to Grundfos specifications. Clean up all the used grease in the bearing bracket before replacing the new bearing.

Automatic grease lubricators

Replace lubricators every 12 months. When replacing the lubricators, follow this procedure:

- Remove the main drain plug, see fig. 33, in the bottom of the bearing bracket for one hour during operation to remove old and excess grease.
- Fit the new lubricators on top of the bearing bracket and set them to empty within 12 months according to the instruction supplied with the lubricators.
- 3. Refit the main drain plug in the bottom of the bearing bracket. Grundfos recommends SKF SYSTEM 24 lubricators, type LAGD 125/HP2 or LAGD 60/HP2.

Quantity	Product number
2 x LAGD 125/HP2	96887371
2 x LAGD 60/HP2	97776374

Relubrication via grease nipples

Grundfos recommends the following relubricating intervals and grease quantities:

Diameter of	Relubricating	Grease quantity [g]		
shaft [mm]	interval [operating hours]	Roller bearing	Angular contact bearing	
24	7500	11	15	
32	4500	13	20	
42	4500	22	30	
48	3500	27	38	
60	3500	30	41	

Caution

The relubricating interval is an estimated value, valid for an operating temperature up to 70 °C. We recommend to halve the intervals for every 15 °C increase in operating temperature above 70 °C.

How to renew grease

Follow this procedure to renew grease:

- 1. Place a suitable container under the bearing bracket to collect used grease.
- 2. Remove the grease drain plugs. See fig. 33.
- 3. Fill the bearing bracket with the recommended quantity of grease by means of a grease gun.
- 4. Refit the drain plugs.

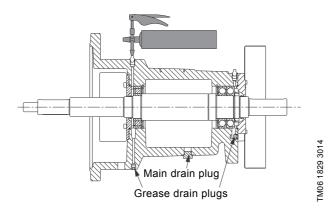


Fig. 33 Renewing the grease

Grundfos recommends SKF LGHP2 grease for relubrication. See the table below.

Basic characteristics	
Code, DIN 51825	K2N-40
Consistency class, NLGI	2-3
Thickener	Polyurea (di-urea)
Base oil	Mineral
Operating temperature	-40 - +150 °C, -40 - +302 °F
Dropping point, ISO 2176	240 °C, 464 °F
Density, DIN 5175	At 20 °C, 68 °F: 0.85 - 0.95 g/cm ³
Base oil viscosity	
40 °C, 104 °F	96 mm ² /s
100 °C, 212 °F	10.5 mm ² /s

Note

If there is visible grease leakage, we advise you to open the bearing bracket cover and replace the V ring. See section 13.1 Service kits.

Caution

Caution

If the pump has been stored or out of operation for more than six months, we recommend you to replace the grease before it is put into operation.

In case of ingress of contamination, more frequent relubrication than indicated by the relubricating interval will reduce the negative effects of foreign particles. This will reduce the damaging effects caused by overrolling the particles. Liquid

contaminants, such as water or process liquids, also call for shorter relubricating intervals. In case of severe contamination, consider continuous relubrication.

Never mix greases with different thickeners, such as a lithium-based grease with a sodium-based grease, before checking with the suppliers.

Caution

Never mix a mineral oil with a synthetic oil.

Some lubricants are compatible, but assessing the compatibility of two lubricants can be difficult. As a general rule, always relubricate a bearing with the same lubricant as was used originally.

11.2.2 Oil-lubricated bearings

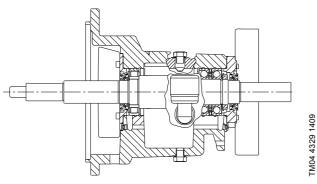


Fig. 34 Bearing bracket with oil-lubricated roller and double angular contact bearings

Under optimum operating conditions, the life of the roller and double angular contact bearings will be approx. 100,000 operating hours. After that period, it is advisable to replace the bearings. See section 13.1 Service kits.

To monitor the bearing condition, regularly measure vibration levels using the SPM measuring points on the bearing bracket. See section 7.9.1 Vibration level.

The bearings are lubricated with mineral oil. Intervals for oil change as well as the required quantities are specified below.

Bearing temperature	Initial oil change	Subsequent oil changes
Up to 70 °C	After 400 hours -	Every 4400 hours
70-90 °C	— Allei 400 llouis -	Every 2200 hours

Bearing type	Diameter of coupling shaft [mm]	Approximate oil quantity [ml]	
	42	850	
Roller and angular contact bearings	48	1700	
contact bearings	60	1350	

Changing of oil

Step	Action
1	Place a suitable container under the bearing bracket to collect used oil.
2	Remove the vent/filling plug and the drain plug.
3	After drainage of the bearing bracket, fit the drain plug, and fill the bearing bracket with new oil. See section 7.8.2 Bearing bracket with constant-level oiler.

Note

Check the oil level regularly during operation, and add oil, if necessary. The level must always be visible in the sight glass.

Basic characteristics Shell Omala 68	Test method	
Viscosity grade	ISO	68
AGMA EP Gear Oil Grade		68
Old AGMA Grade		2 EP
Viscosity:		
At 40 °C, 104 °F	D 445	68 mm ² /s
At 100 °C, 212 °F	D 445	8.8 mm ² /s
Flash point, COC, °F	D 92	405
Pour point, °F	D 97	-15

11.3 Monitoring equipment

It is advisable to take weekly readings of these parameters:

- vibration level use SPM measuring points
- · bearing temperature if sensors have been fitted
- · inlet and outlet pressure use pressure gauges.

Alternatively, follow the maintenance plan laid out for your application.

11.4 Motor

Check the motor at regular intervals. It is important to keep the motor clean in order to ensure adequate ventilation. If the pump is installed in a dusty environment, it must be cleaned and checked regularly.

11.4.1 Lubrication

Motors up to and including frame size 132 have maintenancefree, greased-for-life bearings.

Motors of frame sizes larger than 132 must be greased according to the indications on the motor nameplate. Grease spills from the motor may occur.

Grease specifications: See section 11.4.2 Bearing grease.

11.4.2 Bearing grease

Lithium-based grease according to the following specifications must be used:

- NLGI class 2 or 3
- viscosity of basic oil: 70-150 cSt at +40 °C
- temperature range: -30 +140 °C during continuous operation.

12. Periods of inactivity and frost protection

Pumps which are not being used during periods of frost must be drained to avoid damage.

Drain the pump by removing the drain plug. See fig. 28.

Do not tighten the priming plug or replace the drain plug until the pump is to be used again.

Warning

Care must be taken to ensure that the escaping liquid does not cause personal injury or damage to the motor or other components.

In hot-liquid installations, pay special attention to the risk of personal injury caused by scalding hot liquid. In cold-liquid installations, pay special attention to the risk of personal injury caused by cold liquid.

If the pump is to be drained prior to a long period of inactivity, inject a few drops of silicone oil on the shaft at the bearing bracket. This will prevent the shaft seal faces from seizing up.

13. Service

Warning

If a pump has been used for a liquid which is injurious to health or toxic, the pump will be classified as contaminated.

If Grundfos is requested to service such a pump, Grundfos must be contacted with details about the pumped liquid, etc. before the pump is returned for service. Otherwise Grundfos can refuse to accept the pump for service.

Possible costs of returning the pump are paid by the customer.

13.1 Service kits

Service kits for NK, NKG, see Grundfos Product Center or Service Kit Catalogue.

14. Technical data

14.1 Electrical data

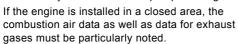
See the motor nameplate.

14.2 Sound pressure level

See table on page 29.

14.3 Belt drive

If the unit is belt-driven, the following data must not be exceeded:


	Max. motor power [kW] for shaft end				
Speed n [min ⁻¹]	Ø 24	Ø32	Ø42	Ø48	Ø60
1000	4	7	11	18	22
1500	5	10	25	32	38
2000	6	14	25	-	-
2500	7	17.5	-	-	-
3000	10	20	-	-	-

For higher power outputs, mount an intermediate shaft with pedestal bearings.

14.4 Operation with combustion engine

Warning

When operating with petrol or diesel engines, the engine manufacturer's installation and operating instructions must be strictly observed. Particularly the direction of rotation is very important. Viewed from the drive shaft end, the pump rotates to the right, clockwise. Viewed from the drive shaft end, the motor must therefore rotate to the left, counterclockwise. The correct direction of rotation is indicated by the arrow on the pump housing.

When draining the tank, make sure to have containers of adequate size ready for this purpose.

15. Fault finding

Warning

Before removing the terminal box cover and before removing/dismantling the pump, make sure that the power supply has been switched off and that it cannot be accidentally switched on again.

Fa	ult	Ca	use	Remedy
1.	Pump delivers no or too little liquid.	a)	Wrong electrical connection, for instance two phases.	Check the electrical connection and remedy, if necessary.
		b)	Wrong direction of rotation.	Interchange two phases of the power supply.
		c)	Air in suction pipe.	Vent and fill the suction pipe and pump.
		d)	Counter-pressure too high.	Set the duty point in accordance with the data sheet. Check the system for impurities.
		e)	Inlet pressure too low.	Increase the liquid level on the suction side. Open the isolating valve in the suction pipe. Make sure that all the conditions in section 7.4 Pipework are complied with.
		f)	Suction pipe or impeller blocked by impurities.	Clean the suction pipe or pump.
		g)	Pump draws in air due to defective seal.	Check the pipeline seals, pump housing gaskets and shaft seals, and replace, if necessary.
		h)	Pump draws in air due to low liquid level.	Increase the liquid level on the suction side and keep it as constant as possible.
2.	Motor-protective	a)	Pump blocked by impurities.	Clean the pump.
	circuit breaker has tripped because the	b)	Pump running above rated duty point.	Set the duty point in accordance with the data sheet.
	motor is overloaded.	c)	Density or viscosity of liquid higher than specified when ordering.	If less flow is sufficient, reduce the flow on the discharge side. Or fit a more powerful motor.
		d)	Motor-protective circuit breaker overload setting incorrect.	Check the setting of the motor-protective circuit breaker and replace, if necessary.
		e)	Motor runs on two phases.	Check the electrical connection. Replace the fuse, if defective.
	Pump makes too much noise. Pump runs unevenly	a)	Inlet pressure too low, i.e. pump cavitates.	Increase the liquid level on the suction side. Open the isolating valve in the suction pipe. Make sure that all the conditions in section 7.4 Pipework are complied with.
	and vibrates.	b)	Air in suction pipe or pump.	Vent and fill the suction pipe or pump.
		c)	Counter-pressure lower than specified.	Set the duty point in accordance with the data sheet.
		d)	Pump draws in air due to low liquid level.	Increase the liquid level on the suction side and keep it as constant as possible.
		e)	Impeller out of balance or clogged impeller blades.	Clean and check the impeller.
		f)	Inner parts worn.	Replace the defective parts.
		g)	Pump stressed by pipework thus causing starting noise.	Mount the pump so that it is not stressed. Support the pipes.
		h)	Defective bearings.	Replace the bearings.
		i)	Defective motor fan.	Replace the fan.
		j)	Defective coupling.	Replace the coupling. Align the coupling. See section 7.3.2 How to align the unit.
		k)	Foreign bodies in pump.	Clean the pump.
		l)	Frequency converter operation	See section 9.2 Frequency converter operation.
4.	Leaking pump, connections, shaft seal or stuffing box.	a)	Pump stressed by pipework thus causing leaks in pump housing or connections.	Mount the pump so that it is not stressed. Support the pipes.
		b)	Pump housing gaskets and gaskets at connections defective.	Replace pump housing gaskets or gaskets at connections.
		c)	Mechanical shaft seal dirty or stuck together.	Check and clean the mechanical shaft seal.
		d)	Mechanical shaft seal defective.	Replace the mechanical shaft seal.
		e)	Stuffing box defective.	Retighten the stuffing box. Repair or replace the stuffing box.
		f)	Shaft surface or shaft sleeve defective.	Replace the shaft or the shaft sleeve. Replace the packing rings in the stuffing box.

Fault		Cause		Remedy	
5.	Too high temperature		Air in suction pipe or pump.	Vent the suction pipe or the pump and replenish.	
	in pump or motor.	b)	Inlet pressure too low.	Increase the liquid level on the suction side. Open the isolating valve in the suction pipe. Make sure that all the conditions in section 7.4 Pipework are complied with.	
		c)	Bearings lubricated with too little, too much or unsuitable lubricant.	Replenish, reduce or replace the lubricant.	
		d)	Pump with bearing seat stressed by pipework.	Mount the pump so that it is not stressed. Support the pipes. Check the alignment of the coupling. See section 7.3.2 How to align the unit.	
		e)	Axial pressure too high.	Check the relief holes of the impeller and the lock rings on the suction side.	
		f)	Motor-protective circuit breaker defective or setting incorrect.	Check the setting of the motor-protective circuit breaker and replace, if necessary.	
		g)	Motor overloaded.	Reduce the flow rate.	
6.	Oil leaking from bearing bracket.	a)	Bearing bracket has been filled with too much oil through the filling hole, resulting in an oil level above the bottom of the shaft.	Drain off oil until the constant-level oiler starts to operate, i.e. when air bubbles can be seen in the reservoir.	
		b)	Oil seals defective.	Replace the oil seals.	
7.	Oil leaking from reservoir.	a)	Threads on reservoir damaged.	Replace the reservoir.	

16. Disposal

This product or parts of it must be disposed of in an environmentally sound way:

- 1. Use the public or private waste collection service.
- $\begin{tabular}{ll} 2. & If this is not possible, contact the nearest Grundfos company or service workshop. \end{tabular}$

Subject to alterations.

Appendix

Sound pressure levels

The data in this table applies for pump including motor, (MG, MMG, Siemens and TECO motors). $\label{eq:model} % \begin{subarray}{ll} \end{subarray} % \begin{subarray}{ll} \end{subar$

The values stated are maximum sound pressure levels. Tolerances are according to ISO 4871.

50 Hz

2-pole: n = 2900 min⁻¹ 4-pole: n = 1450 min⁻¹ 6-pole: n = 970 min⁻¹

	Maximum sound	d pressure level [c	IB(A)] - ISO			
Motor [kW]	Three-phase motors					
	2-pole	4-pole	6-pole			
0.25	56	41	-			
0.37	56	45	-			
0.55	57	42	40			
0.75	56	42	43			
1.1	59	50	43			
1.5	58	50	47			
2.2	60	52	52			
3	59	52	63			
4	63	54	63			
5.5	63	57	63			
7.5	60	58	66			
11	60	60	66			
15	60	60	66			
18.5	60	63	66			
22	66	63	66			
30	71	65	59			
37	71	66	60			
45	71	66	58			
55	71	67	58			
75	73	70	61			
90	73	70	61			
110	76	70	61			
132	76	70	61			
160	76	70	65			
200	76	70	-			
250	82	73	-			
315	82	73	-			
355	77	75	-			
400	-	75				

60 Hz

2-pole: n = 3500 min^{-1} 4-pole: n = 1750 min^{-1} 6-pole: n = 1170 min^{-1}

	Maximum sound pressure level [dB(A)] - ISO 3743					
Motor [kW]	Three-phase motor					
[[]	2-pole	4-pole	6-pole			
0.25	-	-	-			
0.37	-	-	-			
0.55	-	-	-			
0.75	-	-	-			
1.1	64	51	43			
1.5	64	52	47			
2.2	65	55	52			
3	54	57	63			
4	68	56	63			
5.5	68	62	63			
7.5	73	62	66			
11	70	66	66			
15	70	66	66			
18.5	70	63	66			
22	70	63	66			
30	71	65	62			
37	71	65	63			
45	75	65	62			
55	75	68	62			
75	77	71	66			
90	77	71	66			
110	81	75	66			
132	81	75	66			
160	81	75	69			
200	81	75	-			
280	86	-	-			
288	-	77	-			
353	86	-	-			
362	-	77	-			
398	81					
408	-	79	-			
460	-	79	-			

ArgentinaBombas GRUNDFOS de Argentina S.A.
Ruta Panamericana km. 37.500 Centro Industrial Garin

1619 Garín Pcia. de B.A. Phone: +54-3327 414 444 Telefax: +54-3327 45 3190

Australia GRUNDFOS Pumps Pty. Ltd. P.O. Box 2040 Regency Park South Australia 5942 Phone: +61-8-8461-4611 Telefax: +61-8-8340 0155

GRUNDFOS Pumpen Vertrieb Ges.m.b.H. Grundfosstraße 2 A-5082 Grödig/Salzburg Tel.: +43-6246-883-0 Telefax: +43-6246-883-30

Belgium N.V. GRUNDFOS Bellux S.A. Boomsesteenweg 81-83 B-2630 Aartselaar Tél.: +32-3-870 7300 Télécopie: +32-3-870 7301

Belarus

Представительство ГРУНДФОС в 220125, Минск

∠∠∪ I ∠Э, МИНСК ул. Шафарнянская, 11, оф. 56, БЦ «Порт» Тел.: +7 (375 17) 286 39 72/73 Факс: +7 (375 17) 286 39 71 E-mail: minsk@grundfos.com

Bosna and Herzegovina

GRUNDFOS Sarajevo Zmaja od Bosne 7-7A, BH-71000 Sarajevo Phone: +387 33 592 480 Telefax: +387 33 590 465 www.ba.grundfos.com e-mail: grundfos@bih.net.ba

Brazil

BOMBAS GRUNDFOS DO BRASIL Av. Humberto de Alencar Castelo Branco,

630 CEP 09850 - 300 São Bernardo do Campo - SP Phone: +55-11 4393 5533 Telefax: +55-11 4343 5015

Grundfos Bulgaria EOOD Slatina District Iztochna Tangenta street no. 100 BG - 1592 Sofia Tel. +359 2 49 22 200

Fax. +359 2 49 22 201 email: bulgaria@grundfos.bg

Canada

GRUNDFOS Canada Inc. 2941 Brighton Road Oakville, Ontario L6H 6C9 Phone: +1-905 829 9533 Telefax: +1-905 829 9512

China

GRUNDFOS Pumps (Shanghai) Co. Ltd. 10F The Hub, No. 33 Suhong Road Minhang District Shanghai 201106

PRC Phone: +86 21 612 252 22 Telefax: +86 21 612 253 33

Croatia

GRUNDFOS CROATIA d.o.o.

GRUNDFOS CROATIA d.o.o.

Buzinski prilaz 38, Buzin

HR-10010 Zagreb

Phone: +385 1 6595 400

Telefax: +385 1 6595 499 www.hr.grundfos.com

Czech Republic GRUNDFOS s.r.o. Čajkovského 21 779 00 Olomouc Phone: +420-585-716 111 Telefax: +420-585-716 299

Denmark GRUNDFOS DK A/S Martin Bachs Vej 3 DK-8850 Bjerringbro Tlf.: +45-87 50 50 50 Telefax: +45-87 50 51 51 E-mail: info_GDK@grundfos.com www.grundfos.com/DK

Estonia

GRUNDFOS Pumps Eesti OÜ Peterburi tee 92G 11415 Tallinn Tel: + 372 606 1690 Fax: + 372 606 1691

Finland OY GRUNDFOS Pumput AB Trukkikuja 1 FI-01360 Vantaa

Phone: +358-(0) 207 889 500 Telefax: +358-(0) 207 889 550

France

Pompes GRUNDFOS Distribution S.A. Parc d'Activités de Chesnes 57, rue de Malacombe F-38290 St. Quentin Fallavier (Lyon) Tél.: +33-4 74 82 15 15 Télécopie: +33-4 74 94 10 51

Germany GRUNDFOS GMBH Schlüterstr. 33 40699 Erkrath Tel.: +49-(0) 211 929 69-0 Telefax: +49-(0) 211 929 69-3799 e-mail: infoservice@grundfos.de Service in Deutschland: e-mail: kundendienst@grundfos.de

GRUNDFOS Hellas A.E.B.E. 20th km. Athinon-Markopoulou Av. P.O. Box 71 GR-19002 Peania Phone: +0030-210-66 83 400 Telefax: +0030-210-66 46 273

Hong Kong GRUNDFOS Pumps (Hong Kong) Ltd. Unit 1, Ground floor Siu Wai Industrial Centre 29-33 Wing Hong Street & 68 King Lam Street, Cheung Sha Wan

Kowloon Phone: +852-27861706 / 27861741

Telefax: +852-27858664

Hungary GRUNDFOS Hungária Kft.

Park u. 8 H-2045 Törökbálint, Phone: +36-23 511 110 Telefax: +36-23 511 111

GRUNDFOS Pumps India Private Limited 118 Old Mahabalipuram Road Thoraipakkam Chennai 600 096 Phone: +91-44 2496 6800

Indonesia

PT. GRUNDFOS POMPA Graha Intirub Lt. 2 & 3 Jln. Cililitan Besar No.454. Makasar, Jakarta Timur ID-Jakarta 13650 Phone: +62 21-469-51900 Telefax: +62 21-460 6910 / 460 6901

Ireland GRUNDFOS (Ireland) Ltd. Unit A, Merrywell Business Park Ballymount Road Lower

Dublin 12 Phone: +353-1-4089 800 Telefax: +353-1-4089 830

Italy
GRUNDFOS Pompe Italia S.r.l. Via Gran Sasso 4 I-20060 Truccazzano (Milano) Tel.: +39-02-95838112 Telefax: +39-02-95309290 / 95838461

Japan

GRUNDFOS Pumps K.K. Gotanda Metalion Bldg., 5F, 5-21-15, Higashi-gotanda Shiagawa-ku, Tokyo 141-0022 Japan Phone: +81 35 448 1391 Telefax: +81 35 448 9619

Korea

GRUNDFOS Pumps Korea Ltd. 6th Floor, Aju Building 679-5 Yeoksam-dong, Kangnam-ku, 135-916

Seoul, Korea Phone: +82-2-5317 600 Telefax: +82-2-5633 725

Latvia

SIA GRUNDFOS Pumps Latvia Deglava biznesa centrs Augusta Deglava ielā 60, LV-1035, Rīga, Tālr.: + 371 714 9640, 7 149 641 Fakss: + 371 914 9646

Lithuania GRUNDFOS Pumps UAB Smolensko g. 6 LT-03201 Vilnius Tel: + 370 52 395 430 Fax: + 370 52 395 431

Malaysia GRUNDFOS Pumps Sdn. Bhd. 7 Jalan Peguam U1/25 Glenmarie Industrial Park 40150 Shah Alam Selangor Phone: +60-3-5569 2922 Telefax: +60-3-5569 2866

Mexico

Bombas GRUNDFOS de México S.A. de C.V.

Boulevard TLC No. 15
Parque Industrial Stiva Aeropuerto Apodaca, N.L. 66600 Phone: +52-81-8144 4000 Telefax: +52-81-8144 4010

Netherlands

GRUNDFOS Netherlands Veluwezoom 35 1326 AE Almere Postbus 22015 1302 CA ALMERE Tel.: +31-88-478 6336 Telefax: +31-88-478 6332 E-mail: info_gnl@grundfos.com

New Zealand

GRUNDFOS Pumps NZ Ltd.
17 Beatrice Tinsley Crescent
North Harbour Industrial Estate Albany, Auckland Phone: +64-9-415 3240 Telefax: +64-9-415 3250

Norway GRUNDFOS Pumper A/S Strømsveien 344 Postboks 235, Leirdal N-1011 Oslo Tlf.: +47-22 90 47 00 Telefax: +47-22 32 21 50

Poland

GRUNDFOS Pompy Sp. z o.o. ul. Klonowa 23 Baranowo k. Poznania PL-62-081 Przeźmierowo Tel: (+48-61) 650 13 00 Fax: (+48-61) 650 13 50

Portugal

Bombas GRUNDFOS Portugal, S.A. Rua Calvet de Magalhães, 241 Apartado 1079 P-2770-153 Paço de Arcos Tel.: +351-21-440 76 00 Telefax: +351-21-440 76 90

Romania GRUNDFOS Pompe România SRL Bd. Biruintei, nr 103 Pantelimon county Ilfov Phone: +40 21 200 4100 Telefax: +40 21 200 4101 E-mail: romania@grundfos.ro

Russia

ООО Грундфос Россия 109544, г. Москва, ул. Школьная, 39-41, Тел. (+7) 495 564-88-00 (495) 737-30-00 Факс (+7) 495 564 88 11 E-mail grundfos.moscow@grundfos.com

Serbia Grundfos Srbija d.o.o. Grundros Srojja d.o.o. Omladinskih brigada 90b 11070 Novi Beograd Phone: +381 11 2258 740 Telefax: +381 11 2281 769 www.rs.grundfos.com

Singapore

GRUNDFOS (Singapore) Pte. Ltd. 25 Jalan Tukang Singapore 619264 Phone: +65-6681 9688 Telefax: +65-6681 9689

Slovakia GRUNDFOS s.r.o. Prievozská 4D 821 09 BRATISLAVA Phona: +421 2 5020 1426 sk.grundfos.com

Slovenia

Slovenia GRUNDFOS d.o.o. Šlandrova 8b, SI-1231 Ljubljana-Črnuče Phone: +386 31 718 808 Telefax: +386 (0)1 5680 619 E-mail: slovenia@grundfos.si

South Africa GRUNDFOS (PTY) LTD Corner Mountjoy and George Allen Roads Wilbart Ext. 2 Phone: (+27) 11 579 4800 Fax: (+27) 11 455 6066 E-mail: Ismart@grundfos.com

Bombas GRUNDFOS España S.A. Camino de la Fuentecilla, s/n E-28110 Algete (Madrid) Tel.: +34-91-848 8800 Telefax: +34-91-628 0465

Sweden

GRUNDFOS AB Box 333 (Lunnagårdsgatan 6) 431 24 Mölndal Tel.: +46 31 332 23 000 Telefax: +46 31 331 94 60

Switzerland GRUNDFOS Pumpen AG Bruggacherstrasse 10 CH-8117 Fällanden/ZH Tel.: +41-44-806 8111 Telefax: +41-44-806 8115

GRUNDFOS Pumps (Taiwan) Ltd. 7 Floor, 219 Min-Chuan Road Taichung, Taiwan, R.O.C. Phone: +886-4-2305 0868 Telefax: +886-4-2305 0878

Thailand

GRUNDFOS (Thailand) Ltd. Pachindros (Inaliand) Ltd. 92 Chaloem Phrakiat Rama 9 Road, Dokmai, Pravej, Bangkok 10250 Phone: +66-2-725 8999 Telefax: +66-2-725 8998

Turkey GRUNDFOS POMPA San. ve Tic. Ltd. Sti. Gebze Organize Sanayi Bölgesi Ihsan dede Caddesi. 2. yol 200. Sokak No. 204 41490 Gebze/ Kocaeli Phone: +90 - 262-679 7979 Telefax: +90 - 262-679 7905 E-mail: satis@grundfos.com

Ukraine

Бізнес Центр Європа Бізнес центр Європа Столичне шосе, 103 м. Київ, 03131, Україна Телефон: (+38 044) 237 04 00 Факс.: (+38 044) 237 04 01 E-mail: ukraine@grundfos.com

United Arab Emirates

GRUNDFOS Gulf Distribution P.O. Box 16768 Jebel Ali Free Zone Dubai Phone: +971 4 8815 166 Telefax: +971 4 8815 136

United Kingdom GRUNDFOS Pumps Ltd. Grovebury Road Leighton Buzzard/Beds. LU7 4TL Phone: +44-1525-850000 Telefax: +44-1525-850011

U.S.A.

GRUNDFOS Pumps Corporation 17100 West 118th Terrace Olathe, Kansas 66061 Phone: +1-913-227-3400 Telefax: +1-913-227-3500

Uzbekistan

Grundfos Tashkent, Uzbekistan The Representative Office of Grundfos Kazakhstan in Uzbekistan 38a, Oybek street, Tashkent Телефон: (+998) 71 150 3290 / 71 150

Addresses Revised 29.09.2015

Факс: (+998) 71 150 3292

© Convright Grundfos Holding A/S

The name Grundfos, the Grundfos logo, and be think innovate are registered trademarks owned by Grundfos. Holding A/S or Grundfos A/S, Denmark. All rights reserved worldwide.

96646512 1115

ECM: 1163899